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By V. KUMARAN AND DONALD L. KOCH 
School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA 
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The properties of a dilute bidisperse particle-gas suspension under low Reynolds 
number, high Stokes number conditions are studied in the limit 7, < T,, where 7, is 
the time between successive collisions of a particle, and 7, is the viscous relaxation 
time. In  this limit, the particles relax close to their terminal velocity between 
successive collisions, and we use a perturbation analysis in the small parameter s, 
which is proportional to 7,/7,, about a base state in which all the particles settle at 
their terminal velocities. The mean velocities of the two species are O(c) different 
from their terminal velocities, and the mean-square velocities are O(s)  smaller than 
the square of the terminal velocity. The distribution functions for the two species, 
which incorporate the first effects of collisions between particles settling at  their 
terminal velocities, are derived. The velocity distribution is highly anisotropic in this 
limit, and the mean-square velocity in the vertical direction is twice that in the 
horizontal plane. The distribution function for each species is singular at  its terminal 
velocity, and the distributions are non-zero in a finite region in velocity space 
between the two terminal velocities. 

1. Introduction 
In  this paper, we continue the analysis of a bidisperse suspension of particles 

settling under gravity in the low Reynolds number, high Stokes number limit, which 
is applicable to particles of radius 10-100 pm settling in air. In  this limit, we can 
make the following simplifications which permit the analysis of collisions in greater 
detail: the particle drag is given by Stokes law, the gas inertia is neglected, the 
interactions between particles are solid-body collisions, and the hydrodynamic 
interactions between particles are neglected. It is shown in the Appendix that the 
last approximation is justified in a polydisperse suspension in the high Stokes 
number limit. The above simplifications make it possible to obtain a detailed 
understanding of the effect of collisional interactions on the velocity fluctuations in 
the suspension. It has been postulated that the ‘particle pressure’ and ‘particle 
diffusion’, which are related to the mean-square of the fluctuating velocity, play a 
crucial role in determining the stability of fluidized beds (Batchelor 1988 ; Didwania 
& Homsy 1982). Thus, our analysis will help in understanding the effect of collisions 
in more complicated systems, such as fluidized beds, where the gas inertia and 
hydrodynamic interactions may be important. 

The distribution of particle velocities is calculated in two asymptotic limits which 
are defined by the relative magnitudes of two timescales: 7c, the time between 
successive collisions of a particle, and 7,, the viscous relaxation time. In  Kumaran & 
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Koch (1993a, which will be referred to as Part l ) ,  the limit 7, 4 r,, which is 
equivalent t o  St I' + 1 ,  was analysed. Here, B is the volume fraction of the particles, 
the Stokes number, St, is mU/(6nyut), where m and ai are the mass and radius of the 
particle of species i, y is the viscosity of the gas, and U is a characteristic velocity. 
In this limit, a particle does not experience much deceleration between successive 
collisions, and the dynamics of the particles resembles that of the molecules of a gas 
at  equilibrium. The leading-order distribution function is an isotropic Gaussian 
distribution, and is identical to  the Maxwell-Boltzmann distribution of molecular 
velocities. 

The limit r, 4 r,, which is equivalent to St V < 1 ,  is analysed in this paper. In this 
limit, we expect the distribution of velocities to be very different from the R.laxwel1 
distribut>ion, because the particles relax close to their terminal velocities between 
successive collisions. We use a perturbation analysis in the small parameter, E ,  about 
a base state in which all the particles settle a t  their terminal velocities. Here, E is the 
ratio of timescales, 7"/7,, and is proportional to St V .  A distribution function that 
takes into account the first effect of collisions is calculated, and the mean and mean- 
square velocities of the particles are evaluated correct to O(e2). The analysis in $ 2  is 
confined to elastic particles whose drag force is given by Stokes law. Suspensions of 
inelastic particles are considered in $3, and suspensions in which the drag force is a 
nonlinear function of the particle velocity are analysed in 94. 

2. Suspensions of elastic particles 
2.1, Balance equations 

The system consists of two species, 1 and 2, of spherical elastic particles of radii CC, 
and a2, masses m, and m2 and number densities n, and n2, settling under the influence 
of gravity in a gas. The terminal velocity of species 1 ,  vlt, is greater than that of 
species 2, .it. Here velocity and time variables with superscript t are dimensional, 
and those without the superscript are scaled variables. I n  the low Reynolds number 
limit, the drag force on a particle is given by Stokes law, and is a linear function of 
the particle velocity. The viscous relaxation time, which is the time constant in 
Stokes law, is given by 

where pi  is 6nyai. The velocities are scaled by the difference in the terminal velocities, 
v ~ - v ~ ~ ,  and the time variable is scaled by the viscous relaxation time, T , ~ .  To 
simplify the algebra, we define a new velocity variable, ui, as (ui-wtteZ),  the 
difference between the particle velocity and its terminal velocity. The acceleration of 
a particle can be expressed in terms of ui as 

7vi = milpi, (2.1) 

The two timescales that govern the suspension dynamics are the viscous relaxation 
time T , ~ ,  defined in (2.1), and the collision time T C i j ,  which is the time between 
successive collisions of a particle of species i with particles of speciesj. The expression 
for the collision time was given in (2.2) in Part 1. In  this paper, the fluctuating 
velocity of the particles is of the same order of magnitude as the difference in their 
terminal velocities, and the collision time is 

rCij = l/[njnd,2(w],-w&t)]. (2.3) 
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Here d, is the sum of the radii of species i and j. The parameter e used in the 
perturbation analysis is defined as the ratio of the timescales: 

= 7 ~ i / 7 ~ i z .  

The conservation equation for the distribution function is 

at at 

(2.4) 

(2.5) 

The first and second terms on the right-hand side represent the change in the 
distribution function due to viscous forces, and the change in the distribution 
function due to collisional interactions, respectively. The latter term is identical to 
the Boltzmann collision integral in the case of elastic particles. For convenience, the 
collision integral is divided into two parts: 

Here, the collisional accumulation, w(ui), is the number of particles scattered into 
the differential volume dud per unit time due to collisions between particles outside 
this volume, and the collisional depletion, Nyt(ui) ,  is the number of particles 
scattered out of dui per unit time due to collisions involving a particle in this volume. 
The conservation equation is the same as the Boltzmann equation used in kinetic 
theory of gases, except for the important difference that the particle’s acceleration 
is dependent on its velocity. This analysis is in the limit where the particles relax to 
their terminal velocity between collisions, so the distribution function can be 
significantly different from the Maxwell-Boltzmann distribution. 

The balance equations for the moments of ui are obtained by multiplying (2.5) by 
the velocity and the square of the velocity and integrating over the domain of ui.  The 
steady-state balance equations for the moments of uiz, the velocity in the vertical 
direction, and uir, the magnitude of the velocity in the horizontal plane, analogous 
to (2 .21)  in Part I ?  are 

- (7,1/7,i) ( U i z )  + a,(u,>/at = 0, ( 2 . 7 a )  

- ~ ( T , J T , J  <u;> + a,<u:>/at = 0,  (2.7 b )  

- 2 ( ~ v I / ~ v i )  ( u t r >  +ac(utr>lat = 0- ( 2 . 7 ~ )  

Here, a,(p,)/at is the change in the moment (p i )  due to collisions, and the factor 
7,1/7,i appears because the time variable is scaled by 7,1. The momentum and energy 
balance equations at  steady state for the suspension are 

n1 m 1 ( ~ 1 ~ > / 7 ~ ~  +nz mZ(~2~)/7,2 = 0, (2.8a) 

n1 ml((%z) %t + ( , 4 ) ) / T V l +  n.2 mA%t<%) + <7&)/7,2 = 0. (2.86) 

From the above relations, it can be shown that the mean velocities of the two species 
are between the two terminal velocities : 

u1t > iv,t+ ( u d )  > (vzt+ (~2 , ) )  > 71Zt.  (2.9) 

2.2 Leading-order velocity moments 
In  the limit 7,i < 7cij, the particles relax close to t,heir terminal velocities between 
successive collisions, and the fraction of particles that have velocities significantly 
different from the terminal velocities is small at  any point in time. To obtain the 
leading-order collisional change in the mean and mean-square velocities, we assume 
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FIGURE 1. Coordinate system for analysing a collision between particles moving 
a t  their terminal velocities. 

that the velocities of colliding particles are equal to their terminal velocities. The 
collisional configuration is shown in figure I. Here, $ and q are the azimuthal and 
meridional angles made by the impact vector, which is the vector joining the centres 
of the particles at  the point of collision. The frequency of collisions of a particle of 
species i with particles of the other species k = 3 - i ,  such that the impact vector is 
in the differential solid angle sin$d~ddy about ( $ , d y ) ,  is given by 

frequency of collisions = 47 ,12 /~7 , ik )  cos $ sin $ d@ dq. (2.10) 

The factor 8 appears in (2.10) because the collision frequency is scaled by the viscous 
relaxation time 7,1. The velocities of the particles are expressed in terms of the 
velocity of the centre of mass, q,  and the velocity difference, w .  The horizontal 
components of q and w are zero because we assume the particles are settling at  their 
terminal velocities, and their vertical Components are given by 

(2.11a, b )  

Note that all velocities are scaled by the difference in terminal velocities and i is 1 
for the heavier species. The velocity of the centre of mass, q, remains unchanged in 
a collision owing to the momentum conservation condition. The components of the 
velocity difference between the particles after the collision are 

wt = (-1)i-'(sin2$-ecos2y?), w: =$(e+l)sin(2$), (2.12a, b)  

where e is the coefficient of restitution. In this section we consider elastic particles, 
for which the coefficient of restitution is 1. The change in the mean and mean-square 
velocities of the particles for an elastic collision are 

Aui, = ( -  1)'- mk (2 cos2 $), A(u,") = ( -  l)'(&)' (4 cos2 @), (2.13a, b)  
mi+m, mi + m, 

(2.13~) 
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FIGURE 2. Spherical coordinate systems in velocity space used for solving the 
conservation equation for the distribution function. 

The rate of change of a function of the velocity, pi(ui), is calculated by integrating 
the product of the collision frequency, (2.10), and the change in the property during 
a collision, ABi, (2.13), in the $-coordinate from 0 to in and in r from 0 to 271: 

(2.14) 

The mean and mean-square velocities are calculated by substituting the collisional 
changes into the balance equations (2.7) : 

(2 .15~)  

where yik is an 0(1 )  factor, and is given by 

Yik = ( ~ V i l ~ V J  ( 7 C 1 2 / 7 C i d  (2.15d) 

From (2.15b, c) it  can be seen that the velocity distribution is highly anisotropic, 
since the mean-square of the vertical fluctuating velocity is twice the fluctuating 
velocity in the horizontal plane. Note that in an isotropic distribution, the mean- 
square of the vertical fluctuating velocity is half that of the fluctuating velocity in 
the horizontal plane. 

2.3. Velocity distribution function 
In this section, a perturbation analysis is used to calculate the velocity distribution 
functions that take into account the first effect of particle collisions. First, the 
accumulation and depletion in velocity space, w(ui) and wt(u,) in (2.6), due to 
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FIGURE 3. Relation between the angular coordinates of the impact vector and the angular 
displacement of the relative velocity vector during the collision. (a )  Real space, (a) velocity space. 

collisions between particles settling at their terminal velocities, are calculated. These 
are substituted into the conservation equation (2.5), which is solved for the 
distribution functions. 

The gravitational and viscous forces transport a particle towards its terminal 
velocity (see (2.2)). This symmetry in the particle trajectories can be exploited by 
using two spherical coordinate systems centred a t  the terminal velocities of the two 
species, as shown in figure 2. The radial, azimuthal and meridional coordinates in 
these systems are ui, xi and it, respectively. Since the motion of the particles is along 
the radial coordinate, the conservation equation, a t  steady state, reduces to the 
form : 

The collisional terms are calculated by relating the angles xi and it in velocity space 
t o  the angular coordinates of the impact vector (I,+ and q in figure 1 ) .  As shown in 
figure 3, the angle between the relative velocity vectors before and after collision is 
2+. I n  velocity space, the same angle is 2xi. Therefore, the angles + and xi are equal. 
It is easy to see that the meridional angle in velocity space, it, is the same as the 
meridional angle of the impact vector, q. Thus, the relationships between the angles 
in real and velocity space are 

I,+ = xi, q = li. (2.17a, b )  

From (2.12) and (2.17), the velocities of the particles after a collision are 

u& = 2 m ~ c o s ~ , s i n ~ ~ c o s i ~ ,  uTy = 2 m i c o s ~ ~ s i n ~ , s i n i ~ ,  (2.18a, b )  

u; = ( - 1)i 2 4  cos2 xi, (2.18 c) 

where mi = mk/(mi+m,). The velocities after collision, (2.18), lie on a sphere, X i ,  of 

of the sphere is 

radius mi,  1 centred a t  the common velocity q, which is given by (2.12a). The equation 

ui = 2mf cos xi. (2.19) 
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Note that the origin of the coordinate system is at  wit (see figure 3 b ) .  Particles are 
transported onto the surface S, by collisions, and they move back towards the 
terminal velocity owing to viscous and gravitational forces. The collisional 
accumulation on Xi, calculated from the frequency of collisions, (2.10), and the 
relation between the angles in real and velocity space, (2.17), is 

S(U, - 2 4  cos Xi). 
1 

i y ( U i ,  xi, 1,) = E - (1::;) 4nmf2 cos xi (2.20) 

The collisional accumulation is a delta function on the surface of the sphere Si, and, 
therefore, there is a step change in the distribution function at this surface. 

There is collisional depletion, xut(ui) ,  due to collisions involving a particle in the 
volume du, with a particle of the other species lc = 3-i. It can be shown that an 
expression for qut(u,), which is correct to leading order in small E ,  is obtained by 
setting the relative velocity equal to the difference in the terminal velocities. The 
distribution function, which is calculated later in this section, consists of an 'inner 
region', where uk is O(exp ( - 1,'s)) and the fraction of the particles is (1  - O ( e ) )  ; and 
an 'outer region', where uk is 0(1) and the fraction of particles is O(E). Thus, we make 
an O(s) error by approximating the relative velocity when particle i is in the inner 
region and, using this approximation, the collisional depletion for species i in the 
inner region is 

W t ( u i )  = ~ ( 7 c d ~ c i k ) f t ( u i ) .  (2.21) 

When particle i is in the outer region, there is a large relative error in the collisional 
depletion if we replace the particle velocities by their terminal velocities. However, 
the net depletion due to collisions is O(s)  smaller than that due to drag forces in this 
region. Thus, the error made by using (2.21) in the conservation equation (2.16) is 
small throughout the velocity domain. 

Substituting the equation for the collisional depletion, (2.21), into the conservation 
equation in velocity space, (2.16), we get 

Since the collisional accumulation is a delta function on the surface S, bounding the 
velocity domain, we can solve the differential equation by setting the right-hand side 
of (2.22) equal to zero within the domain bounded by Si to obtain 

fi = C ( X r )  up-3. (2.23) 

The function c(xs)  is determined from the condition that the distribution function 
undergoes the following step change on the surface S, due to the collisional 
accumulation : 

(2.24) 

Using this boundary condition and the fact that f, is zero outside X,, the constant 
C(XJ) in (2.23) is 

C(Xi) = (Eyik/n) (cos Xi)1-Brlk (2mf)-"rtfi. (2.25) 

This completes the calculation of the velocity distribution functions that take into 
account the first effect of particle collisions. The distribution function for species i 
is singular at its terminal velocity, but it is integrable over the velocity domain and 
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FIGURE 4. Schematic ofthe shape of the distribution function in a bidisperae snspension. The zero 
levels of the distribution functions of the two species have been separated for clarity. The dotted 
line represents the projection bf the surface 5, onto the (ur, u,)-plane, and the solid line shows the 
distribution function on this surface. 

is normalized. Figure 4 is a schematic of the shape of the distribution function. The 
zero reference levels of the distribution functions of the two species have been 
separated for clarity. Figure 5 is a contour plot of the distribution functions for a 
suspension in which the ratio of particle radii, a,/a,, is 0.7, and the ratio of 
timescales, c, is 0.1. The form of the distribution function confirms the existence of 
the inner and outer regions discussed above. I n  the 'inner region ', ui is O(exp ( - I/€)) 
and the fraction of the particles is 1 -O(E) .  In  the 'outer region', ui is O(1) and the 
distribution function is O(s). There is a collisional depletion of particles in the inner 
region due to collisions between particles travelling close to their terminal velocities, 
which is balanced by an accrual due to drag forces. There is no leading-order 
collisional accumulation in this region. The particles are displaced onto the surface 
Si owing to collisions, and are transported through the outer region owing to viscous 
drag forces. The collisional accumulation and depletion are O(E)  smaller than the 
viscous accumulation in the outer region. 

2.4 First correction to the velocity moments 
The first correction to the velocity moments is calculated using the distribution 
function derived in $2.3. We distinguish between three types of collisions depending 
on the velocities of colliding particles : 

(i) Collisions between two particles that are in the inner region. The frequency of 
these collisions is O(n,  nk/7cik). 

(ii) Collisions in which one of the particles is in the inner region and the other is in 
the outer region, which occur with a frequency of O(enank/rCik). 

(iii) Collisions in which both the particles are in the outer region. The frequency of 
these collisions is O(s2ni n k / T C i l c ) .  
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0, 
FIGURE 5. Contour plots of distribution functions of species 1 and 2 in a suspension. The size ratio, 
a,/a,, is 0.7, the ratio of the number densities, n,/n,, is 1.0, and the ratio of time scales, E ,  is 0.1. 
The solid lines are contours of equal distribution functionfi, and the broken line is the boundary 
of the domain of the distribution function. The velocities are non-dimensionaliaed by the difference 
between the terminal velocities of the two species, and the origin of the velocity coordinate in the 
vertical direction is at  the terminal velocity of species 2. The values of the distribution function on 
the different contours are: Species 1 : (i) 25.0, (ii) 5.0, (iii) 2.0, (iv) 1.0, (v) 0.25. Species 2: (vi) 25.0, 
(vii) 5.0, (viii) 1.0, (ix) 0.25, (x) 0.05. 

Collisions of the first kind cause the leading-order collisional change in the velocity 
moments, which was calculated in $2.2. Those of the second kind contribute to the 
first correction to the collisional terms, which is calculated in the following manner. 
First, assume the particles of species 1 are at their terminal velocity, and calculate 
the momentum and energy transferred due to collisions with particles of species 2 
that have a distribution of velocities given by (2.23) and (2.25). To this add the 
transfers due to collisions between particles of species 2 settling at their terminal 
velocities and particles of species 1 having a velocity distribution given by (2.23) and 
(2.25). It can be easily seen that this average is equal to the sum of the first correction 
and twice the leading-order transfers. Therefore, the collisional terms correct to O ( 2 )  
are calculated by subtracting the leading-order terms from the average described 
above. The collisional change in the moment (P i )  due to collisions between particles 
of species i and k, correct to O(s2), is 

(2.26) 

Here k is 3 - i ,  Aik(Pj) is the change in the property Pi of particle j due to a collision 
between a particle moving at  the velocity ui and a particle of species k moving at  its 
terminal velocity, where j can be either i or k .  APi is the leading order change in the 
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FIGURE 6. h((uf)) ,  which is the ratio of the O(?) correction to the mean-square velocity to the 
leading-order term given in (2.15b), as a function of el. The ratio of number densities is 1, and the 
densities of the particles of the two species are equal. The ratio of particle sizes cze = aJa, is 

ac = 0 .5 ;  ~, a = 0 7 .  ~------ , a, = 0.9. c . )  
-.-.-.-. 

velocity moments given in (2.13). The collisional change in the mean vertical 
velocity, uiz, and the mean-square velocity, u,2, are proportional to the rate of 
momentum and energy transfer in collisions. Since elastic collisions conserve 
momentum and total energy, there is no change in these velocity moments due to  
collisions between particles of the same species, and the collisional rate of change of 
these moments can be calculated using (2.26). However, there is a redistribution of 
energy between the horizontal and vertical direction due to collisions between 
particles of the same species, and this causes a change in the mean-square horizontal 
velocity, utr, due to  collisions of this type. This contribution is given by 

Here Aii(uir) is the change in utr in a collision between one particle travelling at ui and 
another travelling at its terminal velocity. The O(E2)-correct mean and mean-square 
velocities are calculated by substituting the collisional transfer rates, (2.26) and 
(2 .27 ) ,  into the balance equations, (2.7).  

Some of the effects of variations in E and the ratio of particle radii on the velocity 
moments of particles of species 1 are shown in figures 6 and 7. In these figures, the 
number densities of the particles of the two species are equal, and the densities of the 
solid in the particles are also equal. The dimensionless parameter el is given by 
[n1(4nu3 wit/7,J. The parameter el has the same form as E ,  but depends only on the 
terminal velocity of species 1, and not on the difference in the terminal velocities. 
This helps illustrate the effect of changing the radius and number density of species 
2. Note that is equal to 3St, V,, where St, and V, are the Stokes number and volume 
fraction of particles of species 1. 

Figure 6 shows h((uf)) ,  which is the ratio of the O(e2) correction and the leading- 
order mean-square velocity, as a function of el. The leading-order term is given by 
(2.15b),  and the O(eZ) correction is calculated using (2.26). The corresponding ratios 
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FIGURE 7. Difference between the mean velocity and the terminal velocity of particles of species 
1, non-dimensionalized by vTt, as a function of the size ratio a, = aJa, for various values of 
number density ratios n, = n,/n,. The densities of the particles of the two species are equal, and 
el is 0.05. , n,, = 0.5; -, n, = 1.0; -.-.-.-. , n, = 1.5.  

for the other moments show similar trends. The O(ez )  correction is less than 0.1 times 
the leading-order term for el < 0.3, and it is half the leading-order term at el = 2.5. 
This indicates that the asymptotic analysis is quite robust in this limit, and it can be 
used to calculate the velocity moments a t  moderately small values of el. Another 
salient feature is that the O ( 2 )  corrections to the velocity moments tend to reduce 
their magnitude. These corrections are due to the collisional dispersion of particle 
velocities between their terminal velocities, which has a two-fold eflect on the 
collisional transfer of momentum and energy. First, it decreases the difference in the 
momentum and energy of colliding particles, reducing the transfer of momentum and 
energy in each collision. Second, it decreases the relative velocity between the 
particles a t  the point of collision, thereby decreasing the frequency of collisions. 

Figure 7 shows the variation of (u,,) as a function of the ratio of particle radii, 
a2/al. The number densities of the two species are equal, and the parameter el is 0.05. 
As the radius of species 2 is increased, the magnitudes of the mean and mean-square 
velocities of species 1 first increase and then decrease. These trends can be explained 
as follows. The initial increase in the radius of species 2 from zero results in an 
increase in its momentum and energy a t  the point of collision, and the collisional 
transfer rates of momentum and energy increase. As the radius of species 2 is further 
increased, however, the difference between the terminal velocities of the two species 
decreases, and the frequency of collisions decreases, causing a decrease in the 
collisional transfer rates. As the size ratio is increased above one, both the 
momentum of particles of species 2 and the difference in terminal velocities increase, 
and there is a marked increase in the velocity moments. 

3. Suspensions of inelastic particles 
Inelastic collisions between particles provide an additional mechanism for the 

dissipation of energy. In the limit 7, 4 7, (8t I.' 9 l ) ,  analysed in Part 1,  the energy 
dissipation due to inelastic collisions is large compared to that due to drag forces as 
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FIQIJRE 8. Domain of the velocity distribution function for different values of the coefficient of 
restitution, e .  The velocity coordinates are scaled by the maximum particle velocity in the 
horizontal direction in an elastic suspension. -.-.-.-. , e = 0.5; , e = 0.75; -, e = 1.0. 

long as (St V)-g 4 6, where 6 = 1 - e2. Thus, inelastic collisions can significantly 
decrease the magnitude of the velocity fluctuations even when the coefficient of 
restitution, e,  is close to 1 .  

In the limit 7, 4 T,, the dissipation of energy due to inelastic collisions is 
0(6m,(~~,-v~~)~/r,), which is O(6) smaller than the dissipation due to drag forces. 
Thus, inelastic collisions cause an O(S) change in the magnitude of the fluctuating 
velocities, which is small for 6 < 1. However, unlike the analysis in Part 1, the 
present analysis for r, 4 7, is not limited to small 13. The magnitude of the velocity 
difference between the particles after a collision is given by (2.12), and the mean and 
mean-square velocities are 

( 3 . 1 ~ )  

The distribution function for an inelastic suspension is calculated by a procedure 
similar to that used for an elastic suspension in $2.3. The relations between the 
angular coordinates of the impact vector, (?,+,v), and the velocity vector after 
collision, ( x t , 4 ) ,  are given by (2.17). The velocity of a particle after collision is, instead 
of (2.18): 

ui*, = ( e  + 1) mi cos xi sin xi cos ii, (3.2a) 

u& = ( e  + 1 m: cos xi sin xi sin i t ,  (3.2b) 

uc = ( - I ) ~  mi ( - 1 + sin2Xa - e cos2 xi). 

ui = m ~ [ ~ ( e + 1 ) s i n 2 ( 2 ~ , ) + ( s i n 2 ~ i - e c o s 2 ~ , - 1 ~ 2 ~ ~  = ui,(xj) 

(3.2c) 

The surface, S,, onto which the particles are displaced after collision, is given by 

(3.3) 
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and the collisional accumulation is given by 

The distribution function in the region bounded by Si is given by (2 .23) .  However, 
the constant c ( x i )  in this expression is, instead of (2.25), 

(3 .5)  

The qualitative form of the distribution function is the same as that for a 
suspension of elastic particles. However, its domain is smaller, since the velocity of 
the particle after an inelastic collision is smaller than that after an elastic collision. 
The shape of the surface, S,, which bounds the domain of the distribution function, 
is shown in figure 8 for different values of the coefficient of restitution, e. 

4. Suspensions of particles with nonlinear drag 
I n  this section, we examine the effect of a nonlinear pseudo-steady drag force on 

the velocity distribution. I n  general, at non-zero Reynolds number, the particle drag 
is nonlinear in its velocity, and depends on the time history of the particle velocity 
as well. However, for Reynolds number less than about 10 (particles of diameter less 
than about 400 pm settling in air), the dependence of' the drag force on the time 
history of the particle velocity can be neglected (see Lumley 1978). We assume that 
the acceleration of the particles due to gravitational and viscous forces is of the form 

where hi(ui) is a dimensionless function of the difference between the particle velocity 
and its terminal velocity. The non-dimensional conservation equation in velocity 
space is 

We cannot obtain a closed set of balance equations for the velocity moments by 
averaging the product of (4.2) with the velocity and square of the velocity. However, 
these moments can be calculated by first deriving the velocity distribution function 
and then taking its moments. The method for calculating the velocity distribution 
function is outlined below. 

The collisional accumulation and depletion are given by (2.20) and (2.21), 
respectively. We solve the equations in the spherical coordinate systems shown in 
figure 2 .  There is an accumulation of particles on the sphere, S,, described by (2.19). 
Within this sphere, the conservation equation, analogous to (2.16), is 

(4.3) 

This is solved using the boundary condition (2.24) a t  the surface Xi .  

velocity, where m is any real number 
For example, if the drag on a particle is proportional to the mth power of the 

h(u,)  = up, (4.4) 
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u1* 
FIGURE 9. Velocity distribution function fl, as a function of u1 at x1 = 0, for suspensions with 
nonlinear drag for various values of m. The size ratio, a,/a,, is 0.8, and e is 0.1. The dependence of 
the drag force on the index m is given by (4.1) and (4.4). , m = 0.5; -, m = 1.0; 

, m = 2.0. -.-.-.-. 

the solution for the distribution function is given by 

The constant c(xt),  calculated using (2.24), is 

(4.5) 

Note that this distribution function is normalized. 
The structure of the distribution function (4.6) differs from that for a suspension 

which obeys the linear drag law. For m > 1, the distribution function is zero a t  the 
origin, but increases steeply and reaches a maximum of O[(eyik)-3i(m-1)] a t  
ui = [(eyik/(m+2))(”(”-’))]. For rn < 1 ,  the distribution function is singular a t  the 
origin, and decreases as u6 increases. In  the outer region, where us is 0 ( 1 ) ,  the distri- 
bution function is O(e) .  The distribution function fi as a function u1 a t  x1 = 0, 
which corresponds to the velocity in the vertical direction, is shown in figure 9 for 
m = 0.5, 1.0 and 2.0. 

5. Conclusions 
In  this paper, we have presented an analysis of a bidisperse suspension of particles 

settling in a gas in the limit where the viscous relaxation time, T,, is small compared 
to  the time between collisions, 7,. In  this limit, a particle relaxes to its terminal 
velocity between collisions, and we use a perturbation analysis in the small 
parameter e about a base state in which all the particles settle a t  their terminal 
velocities. Here, e is the ratio of timescales 7,/7,, and is proportional to St V ,  so this 
analysis is valid in the limit St V 4 1. The first corrections to the velocity moments 
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are O ( E )  when scaled by the difference in terminal velocities, and these are calculated 
by averaging over the orientations of the impact vector. The distribution of velocities 
is highly anisotropic, and the mean-square of the fluctuating velocity in the vertical 
direction is twice that in the horizontal plane. This is very different from the isotropic 
Gaussian distribution derived in Part 1 for the limit 7, < rvr in which the mean- 
square velocity in the vertical direction is half that  in the horizontal plane. 

of 
collisions between particles settling at their terminal velocity, is singular a t  the 
terminal velocity, and is non-zero in a finite region of velocity space between the 
terminal velocities of the two species (see figure 4). The fraction of particles having 
velocities O(exp ( -  l /e))  different from their terminal velocities is 1 - O ( E ) ,  and the 
fraction of particles having velocities O( 1) different from their terminal velocities is 
O(e) .  The skewness in the vertical direction, which the ratio of the third moment to 
the second moment raised to $ power, increases as 6-i in the limit of small e. 

The first corrections to the velocity moments, calculated using the above 
distribution functions, incorporate the effect of the dispersion of the particle 
velocities on the collisional t.ransfer rates. The dispersion t,ends to decrease the 
magnitude of the velocity moments due to a decrease in both t'he frequency of 
collision, and the average difference in the momentum and energy of the two species. 
These corrections are less than 10% for el between 0.1 and 0.3, indicating that the 
asymptotic analysis is quite robust in this limit. As the size ratio, a2/al ,  increases 
from 0 to 1,  the velocity moments of species 1 first increase, due to an increase in the 
average momentum and energy of species 2,  and then decrease, due to a decrease in 
the collision frequency as the- difference in the terminal velocities becomes smaller. 
For a2/al > 1, the velocity moments increase monotonically as the size ratio 
increases. 

If the collisions between particles are inelastic, the domain of the velocity 
distribution function shrinks, but the form of the distribution remains the same. The 
decrease in the mean-square of the fluctuating velocity due to dissipation in inelastic 
collisions is O( 1 - e2) .  This decrease is small when the coefficient of restitution is close 
to 1 ,  which is unlike the limit T,  + 7, analysed in Part 1, where inelastic collisions can 
result in a significant decrease in the fluctuating velocity even when the coefficient 
of restitution is close to 1. 

The qualitative form of the distribution function could be different if the drag force 
on the particle is not a linear function of its velocity. For example, if the drag force 
is proportional to the mth power of the velocity, the distribution function is not 
singular at the terminal velocity for m > 1. 

The dynamics of a bidisperse suspension of particles in the complementary limit, 
7, < r,, was examined in Part 1 .  Figure 10 (a-c) compares the mean and mean-square 
velocities of species 1 ,  non-dimensionalized by vIt and ~ 1 :  respectively, in the two 
limits. The rat,io of number densities, n%/nl, is 1 ,  and the mean and mean-square 
velocities are plotted as a function of the dimensionless parameter, el, defined as 
[n1(4na3 U ] ~ / T ~ J .  The limit el 4 1 (7, G T ~ )  was analysed in this paper, and the limit, 
el $ 1 (7, < 7,) was analysed in Part 1 .  The mean velocity of species 1 is close to its 
terminal velocity in the limit el < 1 and decreases to the mean velocity of the 
suspension, given by (2 .6)  in Part  1, as el is increased. The mean-square velocities in 
the vertical and horizontal directions are small in the two limits, and increase in the 
intermediate region. The increase is gradual in the limit el 4 1,  but is rather sharp 
in the limit el 9 1. It was shown in Part 1 that, in the limit el % 1 ,  the higher-order 
correct,ions to  the velocity moments are of the same order of magnitude as the 

The distribution function for species i ,  which incorporates the first e 
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FIGURE 10. (a) The mean velocity of particles of species 1 in the vertical direction; ( b )  the mean- 
square fluctuating velocity of particles of species in the horizontal direction, (&); and ( c )  the 
mean-square fluctuating velocity of particles of species 1 in the vertical direction, <c:*), all scaled 
by vi:, as functions of el. The ratio of number densities is 1. -.-.-.-., a, = 0.5; -, a, = 0.7, - 

, a, = 0.9. ~ ~ ~ ~ _ _  

leading terms for el of 0(100), and this seems to be the weaker limit in the theory. 
Therefore, we do not yet have a method of estimating the magnitude of the velocity 
fluctuations for el of O(lOO), which is an important parameter range from a practical 
point of view. 

An approximate form for the distribution in between the two limits will be 
proposed in Kumaran & Koch (1993b), and its accuracy will be examined 
numerically. The form, isotropy and skewness of the distributions in the two limits 
are very different, and a distribution function that incorporates the features of the 
distributions in both the limits may find applications in more complicated systems. 

The authors thank James T. Jenkins for many helpful discussions. This work was 
supported by grant CTS-885 7565 from the National Science Foundation’s Fluids, 
Particulates and Hydraulics Program. 
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Appendix. Effect of hydrodynamic interactions on the variance of the 
velocity in a polydisperse suspension 

In general, two mechanisms create particle velocity fluctuations in a suspension of 
particles settling through a gas. First, the fluid velocity fluctuations induced by a 
particle result in a fluctuating force on the surrounding particles ; this mechanism 
was treated for a suspension of monodisperse particles by Koch (1990). In  a 
polydisperse suspension, the differences in the terminal velocities of the different 
species together with solid-body collisions will create particle velocity fluctuations. 
In the present work, we have treated the second mechanism, and, for simplicity, 
neglected the fluid dynamic interactions. 

While both sources of particle velocity fluctuations are present in a polydisperse 
suspension, it may be shown by a slight adaptation of Koch’s (1990) arguments that 
the effects of hydrodynamic interactions are much smaller than the effects of 
differing terminal velocities in a polydisperse suspension at sufficiently high Stokes 
number. The contribution of each mechanism to the velocity variance may be 
estimated as the square of the velocity change in a single interaction multiplied by 
the rate of interactions and by the viscous relaxation time 7,,. The rate of solid-body 
collisions between particles settling near their terminal velocities is O(n, a: (uit -vg,)), 
and the change in the velocity due to a collision is O ( V ~ , - W ~ ~ ) .  Thus, the variance of 
the velocity due to the effects of polydispersity is O(n,aF ( w ~ , - v ~ , ) ~ ~ , , )  or O(wltSt V 
( A u / u ~ ) ~ ) ) ,  where Xt is the Stokes number, V is the volume fraction, and Aa is a 
characteristic difference in particle radii. The last estimate was based on a situation 
in which the densities of the different species are the same and only their radii differ. 

Koch (1990) showed that the fluid dynamic interactions between particles in a 
gas-solid suspension are like those in a Brinkman fixed bed provided that the viscous 
relaxation of the particles is small in the time that it takes a particle to translate 
through a Brinkman screening distance aV-g. In the present case, this criterion is 
7, $ a V - i ( v f , - ~ ~ , ) - ~ ,  or Xt % V-i(a,/Aa). When this criterion is satisfied, we can 
estimate the contribution of the fluid dynamic interactions to the variance as follows. 
The most important fluid dynamic interaction occurs at  a distance comparable to the 
screening length UP‘-;. The rate at which the particle undergoes such interactions 
is O(n, ((wlt-vJt)) (a, V-i)z) or O((wf,-w~,)/a,). The change in the velocity during an 
interaction is O ( V ’ ~ T ~ / T , ~ )  where v’t, the fluid velocity disturbance, is O(Vi wit) and 
is the characteristic time of the interaction which is O(a, T~ / (W~,-W~,) ) .  Thus, the 
change in the velocity during the interaction is O(wt,St-’ (a,/Aa)). Combining these 
factors, the contribution of the fluid dynamic interactions to the particle velocity 
variance is O(wf,2St--l (ut/Au)). 

From these estimates we see that the effect of solid-body collisions on the 
particle velocity variance is much larger than that of fluid dynamic interactions if 
St 9 V-i ( ~ + / A U ) ~ .  This means that in a polydisperse suspension, i.e. Aa/ai - O( i), 
the fluid dynamic interactions may be neglected in the limit St % V-i. 

Koch’s analysis dealt with fluid dynamic interactions between particles in a 
monodisperse suspension. From the preceding arguments, it is seen that the criterion 
for neglecting the effects of polydispersity in a nearly monodisperse suspension 
becomes more stringent with increasing Stokes number. In particular, polydispersity 
may be neglected only if Aa/ai 4 8t-g V-f. 

The foregoing discussion applies to a fully polydisperse suspension, which could be 
characterized by a non-singular distribution function F(a) ,  where P(a)  da is the 
fraction of particles whose radii are between a and a+ da. This is, of course, the case 
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of most practical interest. Although it would be straightforward to extend our 
analysis of solid-body collisions to a fully polydisperse suspension, the analysis in the 
body of the paper deals with a suspension of only two distinct particle species. 
Interactions between particles of exactly the same terminal velocity are extremely 
rare in a polydisperse suspension, but such interactions are common in a bidisperse 
suspension. Since the period of time which two particles with the same terminal 
velocity spend undergoing a fluid dynamic interaction is much longer than the 
interaction time of particles with different terminal velocities, the effects of fluid 
dynamic interactions between particles of the same species is relatively large. 

The effects of fluid dynamic interactions between particles of the same species can 
be obtained by the direct application of Koch's (1990) results for monodisperse 
suspensions. For St % V-f, it  was shown that each fluid dynamic interaction caused 
a small change in the particle velocity. As a result, the fluid dynamic interactions 
were described in terms of a diffusivity in velocity space. The inclusion of such a 
velocity space diffusivity in the equation (2.5) for the velocity distribution would 
remove the singularity a t  ui = 0 in (2.23). Koch (1990) showed that the fluid dynamic 
interactions led to an O(wTtSt-g) variance in the particle velocity for Xt 9 V-f, 
indicating that the effects of hydrodynamic interactions on the variance of the 
velocity are small compared with the effects of solid-body collisions for a bidisperse 
suspension as long as St 

It seems likely that the effects of hydrodynamic interactions will remain negligible 
for somewhat lower Stokes numbers as well. Koch (1992) recently demonstrated that 
the O(w1; X t f )  scaling of the velocity variance in a monodisperse gas-solid suspension 
holds at  smaller Stokes numbers, 1 < St < Ti, for which a new screening mechanism 
involving the non-local effective viscosity of the suspension replaces the Brinkman 
screening. However, while bidispersity will not affect the qualitative nature of the 
Brinkman screening for St b Ti, we would expect it to affect the screening 
mechanism for smaller Stokes numbers. Thus, no definite statement can be made at  
present about the effects of fluid dynamic interactions in a bidisperse suspension for 
which S t  4 V-i. 

v+. 
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